IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

1965

Security-enabled NFC Tag with Flexible
Architecture Supporting Asymmetric Cryptography

Thomas Plos, Michael Hutter, Martin Feldhofer,

Abstract—This article presents the design and implementation
of a complete Near-Field Communication (NFC) tag system
that supports high-security features. The tag design contains all
hardware modules required for a practical realization, which
are: an analog 13.56 MHz Radio-Frequency Identification (RFID)
front-end, a digital part including a tiny (programmable) 8-bit
microcontroller, a framing logic for data transmission, a memory
unit, and a crypto unit. All components have been highly opti-
mized to meet the fierce requirements of passively powered RFID
devices while providing a high level of flexibility and security. The
tag is fully compliant to the NFC Forum Type-4 specification and
supports the ISO/IEC 14443A (layer 1-4) communication protocol
as well as block transmission according to ISO/IEC7816. As
security features, it supports encryption and decryption using
the Advanced Encryption Standard (AES-128), the generation
of digital signatures using the Elliptic Curve Digital Signature
Algorithm (ECDSA) according to NIST P-192, and it includes
several countermeasures against common implementation attacks
such as side-channel attacks and fault analyses. The chip has been
fabricated in a 0.35pm CMOS process technology and requires
49999 GEs of chip area in total (including digital parts and
analog front-end). Finally, we present a practical realization of
our design that can be powered passively by a conventional NFC-
enabled mobile phone for realizing proof-of-origin applications
to prevent counterfeiting of goods or to provide location-aware
services using RFID technology.

Index Terms—8-bit microcontroller, AES, ECDSA, elliptic
curve cryptography, embedded system, implementation security,
NFC, RFID, VLSI design.

I. INTRODUCTION

Radio-Frequency Identification (RFID) is a wireless com-
munication technique that has become increasingly important
in the last decade. Applications like electronic passports,
logistics, animal identification, and car immobilizers make al-
ready use of this technology. A widely-used data-transmission
standard that bases on RFID technology is Near-Field Com-
munication (NFC). With the integration of NFC functionality
into the latest generation of mobile phones (Samsung Galaxy
Nexus, HTC Ruby) a further spreading of RFID technology

Manuscript received April 4, 2012; revised August 1, 2012; accepted
October 18, 2012. This work has been supported by the Austrian Government
through the research program FIT-IT Trust in IT Systems (Project CRYPTA,
Project Number 820843) and by the European Commission through the ICT
program under contract ICT-2007-216676 (ECRYPT II).

Thomas Plos and Michael Hutter are with Institute for Applied Information
Processing and Communications (IAIK), Graz University of Technology,
Austria, (e-mail: {Thomas.Plos, Michael. Hutter } @iaik.tugraz.at).

Martin Feldhofer was with Graz University of Technology when the work
was done and is now with NXP Semiconductors Austria, Austria, (e-mail:
martin.feldhofer@nxp.com).

Maksimiljan Stiglic and Francesco Cavaliere are with AMS AG, Austria,
(e-mail: {Maksimiljan.Stiglic, Francesco.Cavaliere } @ams.com).

Maksimiljan Stiglic, and Francesco Cavaliere

is expected, paving the way for new applications. These new
applications will have increased demand concerning the func-
tionality provided by the RFID system, especially in context
of security and privacy.

In a typical RFID system, a reader (e.g., a mobile phone)
and a tag communicate contactlessly by means of a radio-
frequency (RF) field. Most of the tags (more than 2 billions
have been sold in 2011) are so-called passive tags that also
receive their power supply from the RF field. A passive tag
is basically a microchip attached to an antenna. The simple
design of passive tags allows them to be produced at low cost,
which is important for applications where large numbers of
tags are required.

Tags used in future RFID applications will have to provide
additional functionality such as security and data-storage fea-
tures. Moreover, the design of the tags must get more flexible
to allow an easier adaption for new applications. Achieving
these goals for passive tags by keeping the overhead in terms
of power consumption (passive operation) and silicon area
(directly influences the tag price) as low as possible is highly
challenging.

A lot of effort has been made by the research community
to allow cryptographic services on resource-constrained RFID
tags. The most prominent services are strong authentication
using for example symmetric primitives like the Advanced
Encryption Standard (AES)[1], [2] or asymmetric primitives
like Elliptic Curve Cryptography (ECC)[3], [4]. Especially
the integration of asymmetric schemes is a big challenge
for passive RFID tag designs as they need more resources
(computational effort, memory, etc.) than symmetric schemes.

When tags have to handle additional functionality, also
their control complexity increases. Today’s RFID tags use
state machines fixed in hardware for handling their control
tasks. However, this approach is no longer practical and even
inefficient when the control complexity increases. Using a
microcontroller approach instead is favorable and provides
much more flexibility. Moreover, having a microcontroller on
the tag for handling the control tasks, allows also reusing it
for computing cryptographic operations.

In this article, we present the design and implementation of
a security-enabled NFC tag with flexible architecture. The so-
called CRYPTA tag (CRYPTA stands for Cryptographic Pro-
tected Tags for new RFID Applications) operates at a carrier
frequency of 13.56 MHz and works fully passively. We target
a low-area design that requires as little resources as possible
such that the tag production does not exceed the practical
limits of a possible commercial launch. The security-enabled
NFC tag has a size of less than 50 kGEs and supports strong

©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works. DOI: http://dx.doi.org/10.1109/TVLSI.2012.2227849

http://dx.doi.org/10.1109/TVLSI.2012.2227849

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

authentication features that base on the AES-128 (symmetric
cryptography) as well as on digitally signing of data using the
Elliptic Curve Digital Signature Algorithm (ECDSA) over the
prime field GF(p192) (asymmetric cryptography). The low-
area goals have been achieved by heavily reusing existing
hardware components like a common 8-bit microcontroller or
a common memory. Passive operation of the tag with conven-
tional NFC-enabled mobile phones allows realizing security-
related NFC/RFID applications. Besides this, we also present
a fully working prototype sample of our design fabricated on
a 0.35 um CMOS process technology.

Our work contains multiple contributions that relate to the

field of secure tag design, which are:

- First low-resource RFID tag that supports asymmetric
cryptography.

- First combined low-area implementation of ECDSA and
AES.

- Flexible tag design based on a microcontroller for pro-
tocol handling and steering of the cryptographic module
(including a design flow for program development).

- First low-resource RFID tag with countermeasures
against implementation attacks.

- First prototype chip of a proof-of-origin tag.

- Consideration of the whole tag life cycle including:
production, personalization, and user application.

Among the contributions listed above, describing the design
of a complete system including all hardware components
required for a practical chip fabrication of a security-enabled
tag (including EEPROM and analog frond-end which are often
omitted in related work) is indeed the most valuable one.
Moreover, we provide details of the design at a level that is
hardly available in published literature.

The remainder of this article is organized as follows.
Section II provides an overview of the CRYPTA tag and
describes the supported functionality. Detailed information
about the tag architecture is given in Section III and an
explanation of the design flow for program development of
the microcontroller is provided in Section IV. Implementation
results and a description of a prototyping sample are presented
in Section V. Conclusions are drawn in Section VI.

II. THE CRYPTA TAG

This section gives a brief overview of the CRYPTA tag
and its main components. We describe the functionality that
is provided by the tag, explain which parts are realized in
hardware and which in software, and outline the typical life
cycle of the tag.

An overview of the architecture of the CRYPTA tag is given
in Figure 1. The tag mainly consists of an analog front-end and
a digital part. The analog front-end is connected to an antenna
and is responsible for demodulating and modulating data, ex-
tracting the power supply, and providing a stable clock signal
as well as a reset signal. Attached to the analog front-end is
the digital part which processes the received (demodulated)
data, performs the requested actions, and prepares the data for
the tag response. The digital part consists of: a low-resource 8-
bit microcontroller, a framing logic (FL), a crypto unit (CU),

1966

CRYPTA tag
Digital part
8-bit microcontroller .
P Crypto unit
i 3 | MC patterns [—>|
Antenna e Progmm |
®| front- ROM | AMBA bus ¢
end f ! Memory unit
3
Framing AMBA bus ..
f— .
logic e

Fig. 1. Overview of the CRYPTA tag’s architecture.

and a memory unit. Central element is the microcontroller
that steers all operations on the tag. The microcontroller
has its program stored in an internal Read-Only Memory
(ROM) and communicates via an Advanced Microcontroller
Bus Architecture (AMBA) bus with the framing logic and the
memory unit. The framing logic is connected to the analog
front-end and provides a byte interface for the microcontroller.
Moreover, the framing logic also handles low-level commands
(basic tag functionality) that are time-critical. High-level com-
mands (advanced tag functionality) that have increased control
complexity are handled by the microcontroller. Cryptographic
operations such as signing of messages or encrypting of
data are processed within the crypto unit that is accessed by
the microcontroller via micro-code patterns. Volatile memory
(RAM) for storing temporary results, non-volatile memory
(EEPROM) for permanently storing data in files, and memory
for storing constants (ROM) are located in the memory unit.

A. Standard Compliance

The tag is compliant to NFC Forum Type-4 specifica-
tion [5] and uses the ISO/IEC 14443A protocol standard for
communication. Basic tag functionality covering tag ini-
tialization and anticollision is implemented according to
ISO/IEC 14443-3 [6]. Advanced tag functionality including se-
curity and file-management commands is implemented accord-
ing to ISO/IEC 14443-4[7] and bases on a block-transmission
protocol. The block-transmission protocol uses Application
Protocol Data Units (APDUs) for exchanging data as defined
in ISO/IEC 7816-4 [8].

Advanced tag functionality of our tag involves secu-
rity and file-management features that rely on six APDU
commands. The security features cover tag authentication
and reader authentication based on challenge-response pro-
tocols using the commands: INTERNAL_AUTHENTICATE,
GET_CHALLENGE, and EXTERNAL_AUTHENTICATE.
The file-management features allow accessing the files stored
in the EEPROM and use the commands: SELECT_FILE,
READ_BINARY, and UPDATE_BINARY. Tag authentication
allows an RFID reader to verify the authenticity of the tag
and can either be done symmetrically using AES [9] or asym-
metrically using ECDSA[10]. Reader authentication allows
the tag to verify the authenticity of the reader and is only
done symmetrically using AES. We use 12 files to store, e.g.,
encryption keys, configuration parameters, data required for
NFC compatibility, and user data. Depending on the file and

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

the configuration parameters of the tag, different read and write
access to the files is granted (e.g., reader has to authenticate
before reading from a file). A detailed description of the
commands supported by the CRYPTA tag can be found in [11].

B. Splitting Functionality into Hardware and Software

Integrating security and file-management features to a tag
significantly increases the control complexity. Data has to be
transmitted from one component to another. Commands that
are split into several blocks (i.e., chaining of data) need to
be reconstructed. Moreover, commands have to be handled
according to their parameters, the configuration of the tag
as well as the current tag state. A tag architecture that is
based on a microcontroller can better cope with such an in-
creased control complexity than a conventional state-machine
approach. However, when using a microcontroller, the fierce
requirements of passive RFID tags in terms of chip area and
power consumption have to be fulfilled. Consequently, only
a very simple microcontroller with small chip size can be
deployed. In order to keep the power consumption low, the
microcontroller should be clocked with the lowest-possible
clock frequency.

Processing all control tasks with the microcontroller would
result in a rather high clock frequency due to the short tag-
response time during initialization and anticollision phase
(basic tag functionality). In order to address this aspect, basic
tag functionality is directly handled by a dedicated hardware
circuit (framing logic). Since controlling complexity of basic
tag functionality is low, implementation in hardware is achiev-
able. Moreover, basic tag functionality is independent of the
overlaying application data and consequently does not affect
the flexibility of the design. Advanced tag functionality on
the contrary leads to high control complexity but has relaxed
timing requirements that make an implementation in software
(i.e., as program) on the microcontroller favorable.

C. Life Cycle of the CRYPTA Tag

We describe the typical life cycle of the CRYPTA tag by
using the example of proof-of-origin as target application.
The life cycle involves three main steps: tag production,
personalization, and user application.

1) Tag Production: The first step in the life cycle is the
production of the tag. There, the chip manufacturer writes
a unique identifier (UID) and a temporary AES key to the
EEPROM of the tag. The UID is fixed and cannot be changed
afterwards. The temporary AES key is sent together with the
tag to the product manufacturer.

2) Personalization: With the temporary AES key, the prod-
uct manufacturer can access the EEPROM of the CRYPTA tag
and can start its personalization. During personalization phase,
the temporary AES key is replaced with the one selected by
the product manufacturer. For ECDSA, a private key and a
public-key certificate (in fact the dynamic part of a X.509
certificate) are stored on the tag. Moreover, read and write
access to the different files in the EEPROM is defined and
configuration parameters are set. The personalization phase is
finished by enabling a special lock bit that prevents a further
personalization of the tag afterwards (cf. Section III-D2).

1967
—>» POR ——>» [Power-on-reset
—> (;IXO;k ——— JUL Clock signal
Limiter Modulator Rectifier Cs
B 1 Regu- [°
Antenna B Bt 3 Power suppl
= /B’ I:: T lator | PPly
Demo-

dulator

Serial data
(interface to FL)

Fig. 2. Basic blocks of the analog front-end.

3) User Application: After personalization, the tag can be
attached to the product that needs to be protected against
counterfeiting. When a user buys the product together with
the tag and wants to check its proof-of-origin (i.e., whether
the product is genuine or not), one can download, e.g., an
application from the web page of the manufacturer and run
it on an NFC-enabled mobile phone. When touching the tag
with the mobile phone, the application verifies first the validity
of the public-key certificate on the tag, before starting with
the authentication via ECDSA afterwards. When the certificate
validation and the authentication step succeed, the product can
be treated as genuine.

III. TAG ARCHITECTURE

In the following, we describe the individual hardware com-
ponents of the CRYPTA-tag architecture in detail, which are:
analog front-end, framing logic, 8-bit microcontroller, and
crypto unit.

A. Analog Front-End

The analog front-end extracts the tag’s power supply from
the RF field and provides an interface for the digital part (data,
clock, reset). Main building blocks of the analog front-end,
as shown in Figure 2, are: a limiter, a rectifier, a storage
capacitor Cg, a regulator, a power-on-reset (POR) circuit,
a clock-extraction circuit, a demodulator, and a modulator.
The analog front-end is connected to a coil antenna that is
receptive for the 13.56 MHz RF field emitted by the reader. In
order protect the input of the analog front-end from too large
voltages at the antenna, a limiter is used. The limiter starts
drawing current when the antenna voltage increases (similar
to a shunt regulator). For extracting the power supply of the
tag, the voltage from the antenna is first fed into the rectifier
and buffered by a storage capacitor before it goes through the
regulator that keeps the supply voltage at a constant value.
When the supply voltage is sufficiently large, a reset signal
is released by the power-on-reset circuit. This reset signal
activates the other components of the analog front-end and also
the digital part. The clock signal for the digital part is directly
extracted from the RF field via the clock-extraction circuit.
Hence, the tag operates synchronously with the RF field. For
receiving data from the reader, a demodulator is used. The
demodulator has an envelope detector integrated as the reader
data is amplitude modulated on the RF signal. The output of

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Clock signal . A
> Bit-clock signal
Serial data RxTx unit) A
Pr— > AMBA | Direct signals
i —
7y interface
AMBA
848 Pparallel FIFO BUS
Yy data -t >
Control unit | 8 ™ Cans]
h 8 Config.

Fig. 3. Overview of the framing-logic architecture.

the demodulator provides a clean digital signal that can be
further processed by the framing logic. For transmitting data
to the reader that comes from the framing logic, a modulator
is used. The modulator switches an impedance in step with
the data that needs to be transmitted, resulting in a classical
load modulation.

B. Framing Logic

The framing logic is some kind of serial-to-parallel interface
that handles also basic tag functionality. Figure 3 sketches the
architectural overview of the framing logic with the following
main blocks: receive-and-transmit (RxTX) unit, control unit,
and AMBA interface. The RxTx unit is the interface between
the serial data signals of the analog front-end and the parallel
data signals of the control unit. Additionally, the RxTx unit
receives a clock signal from the analog front-end, which is
used to extract a bit-clock signal that is provided to the
microcontroller and the other components of the tag’s digital
part. For a default data rate of 106kbit/s, the resulting bit-
clock signal has a frequency of 106 kHz. Incoming serial data
from the analog front-end is first sampled by the RxTx unit,
decoded into bits, transformed to byte data, and checked for
integrity (parity bits and CRC). Byte-level data coming from
the control unit is appended with a checksum, encoded, and
then transmitted bit by bit to the analog front-end. The RxTx
unit is also responsible for proper timing of the tag response,
which needs to be transmitted within certain time slots. The
control unit steers the RxTx unit as well as the AMBA
interface and handles also the initialization and anticollision
phase of the tag (basic tag functionality). Commands that
relate to advanced tag functionality are not handled by the
control unit and are directly forwarded to the AMBA interface
instead. The AMBA interface places this data into a so-called
first-in first-out (FIFO) buffer (stores up to 6 bytes) that is
accessed by the microcontroller over the AMBA bus. The
buffer decouples the communication between control unit and
microcontroller. When data coming from the microcontroller
needs to be transmitted by the framing logic it is first placed
in the FIFO buffer and then forwarded by the control unit to
the RxTx unit.

For connecting the framing logic with the AMBA bus
the AMBA interface is used. Although the data width of
the AMBA bus is 16 bits, only the lower 8 bits are used
by the framing logic, since it operates on byte level. The
AMBA interface also contains a status register that provides

1968

ROM .
r,fz— e r/g— AMBA
Program 6 AMBA | BUS>
counter + stack registers
10 register [« FL
Address { 12
Register file
ROM 26 x 8-bit
2027 x 16-bit
Data
Program memory
memory - cU
STATUS - Status
ACC 2
16
Instruction Mux
ROM | reg_out]] reg_out2
16 3 8
A y Yy v
Instruction
decode unit ALU Status
CU
control ALU out

Fig. 4. Overview of the microcontroller architecture.

information about the internal state of the framing logic and a
configuration register that allows the microcontroller to adjust
various parameters. Both registers can be accessed by the
microcontroller via the AMBA bus. Besides the AMBA bus,
some additional direct signals are shared between framing
logic and microcontroller to speed up communication (e.g.,
actual number of utilized bytes in the FIFO buffer).

C. 8-Bit Microcontroller

Our 8-bit microcontroller targets at low chip area and
low power consumption for replacing conventional state ma-
chines that make a design inflexible and modifications very
costly. Contactless smart cards in comparison have often 32-
bit controllers integrated that can perform rather expensive
operations [12], [13] but have high resource usage (area/power
consumption). Our implemented microcontroller combines the
advantages of hardwired state machines and complex con-
trollers. It keeps the design programmable while consuming
only a limited amount of hardware resources. The microcon-
troller steers all other modules of the tag via a memory-
mapped AMBA bus or direct interfacing. Moreover, it is
fully synthesizable for standard-cell technology but using an
integrated program ROM macro is also possible.

An overview of the microcontroller architecture is depicted
in Figure 4. The design uses a Harvard architecture which has
the advantage that data memory (8 bits) and program memory
(16 bits) can have different word sizes. The microcontroller
supports 31 instructions which can be divided into four groups:
logical operations (AND, XOR), arithmetic operations (ADD,
SUB), control-flow operations (CALL, RET), and an operation
for executing micro-code patterns (MICRO instruction). In
order to reduce overhead no interrupts are supported which
means that polling has to be implemented when waiting for
an event.

There are several reasons why using an 8-bit datapath width
for the microcontroller of our CRYPTA tag is beneficial.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

First, using a smaller datapath width reduces the area of the
microcontroller core and lowers also the power consumption.
Although a larger datapath width (e.g., 16 or 32 bits) typi-
cally allows a more efficient handling of data (i.e., with less
instructions) this holds no longer true when using a microcon-
troller mainly for control tasks. Second, the deployed block-
transmission protocol (ISO/IEC 7816-4) operates on byte level,
making it the natural choice to select an 8-bit datapath width.
Using a smaller datapath width (e.g., 4 bits) will unnecessarily
increase code size when handling protocol commands on byte
level (e.g., when checking a command sequence).

The main components of the microcontroller are the reg-
ister file, the program counter (PC), the program memory,
the arithmetic-logic unit (ALU), and the instruction decode
unit. The register file contains the data memory and consists
of 26 8-bit registers. Although potentially 32 registers are
addressable we reduced the size to 26 (minimum number of
registers required for handling the protocol) which reduces
the overall chip size and emphasizes the flexibility of our
approach (saves about 65 GEs per register). The register file
contains a set of general-purpose registers for storing variables
and the internal state as well as special-purpose registers.
These special-purpose registers (accumulator (ACC), status
register (STATUS), 6 AMBA registers, 10 register) are used
for advanced data manipulation, status information like carry
or the external status of a device, the AMBA bus access, and
for the direct access of information from the framing logic
and the crypto unit.

Instructions are executed within a two-stage pipeline that
consists of a fetch and a decode-execute step. First, the
instruction that is addressed by the 12-bit program counter
is loaded from the program ROM into the instruction decode
unit. Then the instruction is decoded by the instruction decode
unit and executed by the ALU. Finally the program counter
is updated. The program counter contains a call stack that
allows up to four recursive subroutine calls. All instructions
are executed within a single clock cycle, except control-flow
operations (2 cycles if branch is taken) and the execution of
micro-code patterns (depends on the pattern that is executed).
The ROM contains the program of up to 4096 instructions
and is realized as look-up table in hardware. The ROM is
also flexible where we instantiate only 2027 instructions in
the current design.

D. Crypto Unit

The crypto unit provides the following cryptographic ser-
vices: digitally signing of data using the National Institute
of Standards and Technology (NIST) recommended elliptic
curve NIST P-192[10], encryption and decryption using AES-
128 [9], and hashing of data using SHA-1[14]. We selected
the NIST P-192 curve and AES-128 since both algorithms
are standardized and have been analyzed over more than 12
years. They have proven to resist various attacks and provide
a high level of security. Moreover, standardized algorithms
are easier to integrate into existing infrastructures (e.g., when
using X.509 certificates or when using software bundles that
already support the curve NIST P-192 and AES-128). The

1969

NIST P-192 curve is the smallest recommended NIST elliptic
curve over prime fields, which is important to minimize the
amount of resources needed on the tag. Note that using an
elliptic curve with a finite-field size of 160 bits or less (i.e., a
security level of 80 bits or less) is no longer recommended by
organizations such as the NIST or the Standards for Efficient
Cryptography Group (SECG). Choosing a larger curve, e.g.,
NIST P-224 or P-256, would need more hardware resources
(especially more memory capacity) and would require more
time to generate a digital signature.

During the design phase of the project, we decided to reduce
the overall area requirements by reusing hardware components
like the memory and the controller for all implemented al-
gorithms. ECDSA dominates the memory requirements and
the controlling effort. In order not to increase the overall
area requirements of the tag, AES and SHA-1 share as many
resources (e.g., registers, finite-field multiplier) as possible
with ECDSA. Furthermore, for implementing the higher-
level cryptographic protocols we made use of the micro-
controller. The protocols we have implemented are, e.g., the
ECDSA authentication protocol according to ISO/IEC 9798-3
and ISO/IEC 9798-2 for mutual authentication using AES.

In order to improve the performance of cryptographic
computations, we further decided to follow a micro-code
control paradigm where low-level cryptographic instructions
are implemented in eight distinct ROM tables. These so-called
micro-code patterns are executed by a pattern sequencer that is
invoked by the microcontroller using a dedicated instruction-
set extension (the MICRO instruction). We implemented sev-
eral microprograms, for example, for SHA-1, Montgomery
multiplication and inversion, modular addition, subtraction,
multiplication, modular reduction, and AES encryption and
decryption. Each microprogram requires different instructions,
instruction widths, and lines of code. SHA-1, e.g., needs only
9 bits for the instructions whereas modular arithmetic requires
18 bits. Therefore, we implemented each microprogram in
eight different ROM tables that are different in length and
width which lowers the overall area requirements.

Next to the micro-code pattern sequencer, the crypto unit
consists of a datapath that realizes the basic operations for
ECDSA, AES, and SHA-1, as well as a common memory
unit which are described in the following subsections.

1) Datapath for ECDSA, AES, and SHA-1: The datapath
of the crypto unit is shown in Figure 5. Basically, it consists
of an ECDSA and AES datapath as well as a common
40-bit register that is used as accumulator during ECDSA
execution and as an intermediate storage register for AES. In
order to find the optimal datapath width for our processor,
we made use of a high-level model written in Java. The
model implements the datapath of ECDSA (including SHA-1)
and AES as hierarchical functional blocks (a very hardware-
near implementation). The model allows to vary different
parameters like the datapath width. Each functional block of
the model counts the number of needed clock cycles so that the
execution time of the implementation can be roughly estimated
for a given clock frequency. As a result, it showed that for
small datawidths of, for example, 8 bits or less the runtime
of ECDSA exceeds several million clock cycles. Hence, the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

PortA {

Port B %
L

N

(o

rrrrrr

mixcol

16x16
multiplier

mux2

ECDSA

ETET L]
hi_low D ACC]
T

AES

Datapath

|
im

N
d
Jrouta Out B

Fig. 5. Datapath of the crypto unit supporting ECDSA, AES, and SHA-1.

computation of ECDSA would require several seconds when
using a clock frequency of 1 MHz. For a 16-bit datawidth, we
estimated the calculation to take around 0.8 seconds, and for
larger datawidths of 32 bits and more, the estimated execution
time is reduced to only a few hundred milliseconds and even
below. In general, the faster the implementation the broader
is the range of possible RFID applications. While there exist
applications where long response times are acceptable, e.g.,
in cases with continuous (authenticated) inventory requests
in ware houses, there exist many applications where short
response times are mandatory, e.g., authentication of products
in logistics or in access control. However, choosing a larger
datawidth requires more hardware resources even though it
can process the operations much faster. In view of hardware
resources, the dominant part (especially for ECDSA) is the
hardware multiplier. We therefore implemented and synthe-
sized different hardware multipliers and compared the area
requirements. It showed that if the size of the datapath is
doubled, the required area for the multiplier is increased by a
factor of 4. In detail, an 8-bit multiplier needs about 380 GEs,
a 16-bit multiplier needs 1600 GEs, and a 32-bit multiplier
needs already about 6700 GEs. Due to these outcomes, we
decided to implement a 16-bit datapath which, in our case, is
a good trade-off between area and required speed.

Figure 5 further shows two separated ALUs for ECDSA and
AES whereby in the ECDSA part a 16 x 16-bit multiplier
and two 40-bit adders build the central components. For
ECDSA, we implemented a multiply-accumulate architecture
that allows multiplication and addition in the same clock
cycle as proposed by J. GroBschiadl[15] and also practically
applied by D. Hein [16]. Furthermore, we integrated the logical
operations of AND, OR, and XOR in the ECDSA datapath
which are also the main operations in SHA-1. ECDSA can
reuse these operations, e.g., to extract individual bits of the
secret nonce used during the scalar multiplication. So, sharing
these resources is obvious and recommended to minimize the
area requirements of the tag. The ALU of the AES mainly
consists of an AES S-box and a MixColumns multiplier.
This architecture has been taken from the low-power AES
implementation of M. Feldhofer et al.[17]. In addition, we
decided to separate the AES datapath into two 8-bit operations.

1970

This allows to reuse the remaining 8 bits to implement
countermeasures against implementation attacks. In fact, we
implemented dummy AES rounds and shuffling of bytes in
the AES state. For further information and details about the
crypto unit, the implementation results, and a comparison with
related work, we refer to[18], [19].

2) Memory Unit: The memory unit consists of three mem-
ory types that are RAM, ROM, and EEPROM. They are
addressable using a 16-bit linear dual-port memory space.
The 128 x 16-bit dual-port RAM has been realized using a
dedicated macro block. This significantly reduces the chip
area and production costs, respectively, as compared to a
standard-cell based RAM. A dual-port RAM showed to be
advantageous since it allows reading of two words within one
clock cycle. Also writing into one port and reading from the
other is possible. This fact decreases the execution time of
modular multiplication (which is the main finite-field operation
in ECDSA) significantly. Also the size of the RAM, namely
128 x 16 bits, is advantageous since the datapath has also
a width of 16 bits. Another important fact is that our chip
manufacturer is in possession of a RAM macro with that
size (RAM macros may not be available for other exceptional
sizes). The RAM memory is used for: ECDSA that needs
7 % 192 bits for calculating the point multiplication, one 192-
bit value that is needed to store the message that has to be
signed, and one 192-bit value that is needed to store the
ephemeral key k. Additionally, we reserved 192 bits for storing
the seed that is used in both ECDSA and AES to generate
the needed random numbers. Our prototype uses a Pseudo
Random Number Generator (PRNG) to derive the random
numbers from the seed. When used in a commercial product,
the PRNG should be replaced by a True Random Number
Generator (TRNG) to ensure a maximum level of security.

Next to the RAM macro, we made use of a dedicated
EEPROM macro. The EEPROM stores non-volatile data like
the ECDSA private key, the public-key certificate, the AES
secret key, and potentially other user-specific data up to 4 kbits,
which can be written in a personalization phase or during the
protocol execution. The EEPROM also supports a so-called
one-time programmable mode where bits that are set once
can no longer be cleared afterwards. This is used for example
to prevent erasing of lock bits that were previously set. Note
that most of the related work does not consider an EEPROM,
which is in fact an important real-world requirement. Last but
not least, we implemented a ROM circuit that stores 128 16-bit
constants like ECC parameters, SHA-1, and AES constants.
In contrast to the RAM and EEPROM macro, it has been
implemented as an unstructured mass of standard cells.

3) Implementation-Attack Countermeasures: We integrated
several countermeasures in our design to thwart against com-
mon implementation attacks [20]. For ECDSA, we made use
of the Montgomery scalar multiplication algorithm [21] that
provides implicit protection against Simple Power Analysis
(SPA) attacks. Furthermore, we randomized the projective
coordinates of each elliptic-curve point to resist against Differ-
ential Power Analysis (DPA) attacks [22]. Finally, after scalar
multiplication, the resulting point is checked to be a valid point
on the elliptic curve which protects against most of the known

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Assembler code

LABEL("FL_wait_byte_or_eof"):
RX_EOF_OR_1_BYTE):

Jav}
ramingLogic.FIFO_ADDR) ;
er") :

"(1<<AMBA_SEL) | (1<<AMBA_AUTO_TOGGLE_EN)):

LABEL("FL_read_tr
MovLF (AMBA_CONTROL,

NOP():
XorLF(AMBA_CONTROL, (1<<AMBA_SEL)|(1<<AMBA_EN)):
ET():

10
data 10)
2 module @ Instruction set
0=
£ Crypto ISS Assembler
module] Controller
config

v v

i g

ROM
(hex,bin)

10 output Statistics

VHDLROMcode ¥

rom_data_type
rom_data_type
rom_data_type' ('
rom_data_type' ("00000
rom_data_type' ("1001100
rom_data_type' ("0000000

Fig. 6. Design flow for program development.

fault attacks[18], [19].

For AES, we integrated dummy operations (the number of
dummy operations can be configured before synthesis) and
shuffled the bytes in the 128-bit state. These hiding counter-
measures make attacks on AES less attractive since the effort
to perform an attack significantly increases with the number
of added dummy operations. Practical measurements, where
we performed electromagnetic-analysis attacks on AES, have
shown that the number of needed measurements is increased
from 246 (for the unprotected AES version) to more than 16
millions (for the protected AES version) [23].

IV. DESIGN FLOW FOR PROGRAM DEVELOPMENT

The code development for the microcontroller makes our
design approach very flexible. We have implemented a self-
written tool chain that provides instruction-set simulation and
assembler functionality. An overview of the design flow for
code development is depicted in Figure 6. The program itself is
written in assembler style but uses Java syntax that is actually a
Java file. This avoids that we have to write parsing functional-
ity and we can use Java for preprocessing, constant definitions
and the like. Both the instruction-set simulator (ISS) and the
assembler use a common instruction-set architecture definition
(also based on Java). Further controller configuration that
defines for example the available number of registers, the stack
depth etc. are used in the simulator only.

The simulator additionally allows to integrate models of
IO modules and other components like cryptographic circuits
to enable simulation of the whole system (e.g., to generate
also test data for Hardware Description Language (HDL)
simulation). The simulation provides features like single-step
mode, statistical data on the simulation run, and gives access
to the internal state of the microcontroller. This makes debug-
ging and testing of the program very convenient. Whenever

1971
TABLE 1
AREA OF CHIP COMPONENTS.

Component GEs %
Analog front-end 8100 16.20
Framing logic 2663 5.33
8-bit microcontroller

Instruction decode unit, ALU, and PC 945 1.89

Register file (26 x 8-bit) 1693 3.38

Program ROM (2 027 x 16-bit) 6764 13.53
Bus arbiter 319 0.64
Crypto unit

Micro-code pattern sequencer 3880 7.76

Datapath (ECDSA, AES, and SHA-1) 3608 7.22
Memory unit

EEPROM (256 x 16-bit) 12700 25.40

ROM (crypto-unit constants) 600 1.20

RAM macro (128 x 16-bit) 8727 17.45
Total 49999 100.00

the developed program is working in the simulator we use
the assembler tool for code generation. The assembler is
used to transform code from assembly language to a binary
representation based on the instruction set (also dissolves
addresses of labels). As the first and most important output
it generates HDL code of the ROM as a look-up table ,which
can be subsequently used for synthesis or for HDL simulation.
Furthermore, it provides the data in a hex-file format and in a
representation used for ROM-macro implementation.

V. IMPLEMENTATION RESULTS

We have implemented our flexible tag platform in VHDL
and designed it towards low resource usage and low power
consumption, i.e., by applying clock gating and operand-
isolation techniques.

We implemented our design in a 0.35 um CMOS technology
using a semi-custom design flow with Cadence RTL Compiler
as synthesis tool. TableI shows the chip-area results in terms
of gate equivalents (GEs). In total, the chip needs 49 999 GEs
including analog front-end, framing logic, microcontroller, bus
arbiter, crypto unit, and memory. About 21 % (10763 GEs) are
needed for the RFID analog front-end and the framing logic.
The microcontroller needs around 19 % including instruction
unit, ALU, PC, register file (about 65 GEs per register), and
program ROM. The datapath and the pattern sequencer of the
crypto unit take about 15 % of the chip area, i.e., 7488 GEs
(this number does not include the ROM for ECDSA, AES,
and SHA-1 program and the needed constants). The highest
amount of resources is required for the memory, i.e., about
44 % of the total area, which equals to 22027 GEs. By far
smallest component is the bus arbiter (responsible for the
AMBA bus), consuming less than 1% of the total area.

The RFID front-end is clocked with 106, 212, or 448 kHz
according to the specified data rate. The crypto unit can be
clocked at higher frequencies (0.847, 1.7, 3.3, or 6.68 MHz)
in order to improve the performance (configured in an EEP-
ROM register during tag personalization). At a frequency of
1.7 MHz, a digital signature can be generated within 505 ms,
i.e., 863109 clock cycles. Hashing a message needs 2.15 ms
(3639 clock cycles) and AES needs 2.66ms (no dummy
rounds) and 9.16 ms (10 dummy rounds applied) which corre-
sponds to 4529 and 15577 clock cycles, respectively. At the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE 11
DISTRIBUTION OF ROM CODE WITH RESPECT TO TAG FUNCTIONALITY.
Tag functionality Code size
[Instructions] [%]
Protocol
Generic subroutines 312 15.40
Block transmission 499 24.60
File management 331 16.30
Security features 119 5.90
Crypto services
ECDSA-P192 487 24.00
AES-128 223 11.00
SHA-1 56 2.80
Total 2027 100.00

highest frequency of 6.68 MHz, the ECDSA module needs
127 ms for generating a digital signature, which is sufficient
for most applications having stringent response-time require-
ments.

A. Program ROM

After developing and evaluating the program of the mi-
crocontroller with the Java-based instruction-set simulator
described in Section IV, the assembler was used to transform
the assembly code into synthesizable VHDL ROM code.
Proper operation of the whole tag has been further verified
through simulations with Cadence NC Sim and through tests
on an FPGA RFID tag prototype that can communicate with
different reader devices, cf.[24]. The final ROM code for the
microcontroller contains 2 027 instructions (equals 4 054 bytes
of code). Subroutine calls are used whenever possible to keep
code size small. Table II shows the distribution of the ROM
code with respect to tag functionality. Most instructions of
the ROM code, about 25 %, are only used for handling the
block-transmission protocol. Around 15 % of the instructions
are utilized for generic subroutines that provide a basic set
of functions that are reused multiple times (e.g., routines for
accessing the AMBA bus). File management and security
features require about 22 %. The program part for steering
the crypto unit needs 766 instructions, corresponding to about
38 % of the total program ROM (24 % for ECDSA-P192, 11 %
for AES encryption/decryption, and 2.8 % for SHA-1).

Most of the instructions stored in the ROM relate to protocol
handling, illustrating the high control complexity of our tag
design. However, also the code used for steering the crypto
unit comprises mainly control instructions (e.g., for executing
micro-code patterns). Analyzing the code in the ROM in
detail shows that about 60 % of the instructions are control
operations (CALL, RET, BNZ, MICRO). Only 10% of the
instructions relate to pure data-flow oriented operations be-
tween one or two registers (XOR, ADD, ROT). The rest of the
instructions belongs to operations between constants in ROM
and registers, e.g., immediate load and compare instructions
(MOVLEF, XORLF).

B. Power Consumption

Power simulations of the system were conducted with
the transistor-level SPICE simulator Synopsys Nanosim. The

1972

»eh 3

Il L B

Flexible tag platform w
crypto unit

EEPROM |

Fig. 7. Photo of the manufactured RFID tag-prototype chip.

simulation for the microcontroller shows a mean power con-
sumption of only about 10 pA for the 0.35 um CMOS process
technology when powered with a supply voltage of 2V and
using a clock frequency of 106kHz, i.e., for a default data
rate of 106kbit/s. When higher data rates are selected, the
power consumption increases accordingly (linearly with data
rate). The crypto unit, in contrast, consumes about 485 uA
as total mean current measured at 847 kHz, i.e., the lowest
frequency for the crypto unit. More than 40 % of that power
is due to the memory unit which is heavily used during scalar
multiplication. The datapath unit needs about 24 %, the clock
tree requires approximately 16 % [18].

Note that the overall power consumption of the system
is already quite low due to low-power design techniques
like clock gating and operand isolation. It meets the power
requirements of most HF RFID systems and can be applied
in different RFID or NFC applications. However, the power-
consumption value can be even further decreased by moving
towards a more-advanced CMOS process technology, e.g.,
0.18 um or 0.13pm. Using these technologies, the reading
distance becomes even better and can be applied, e.g., in long
range ISO/IEC 15693 applications.

C. An RFID-Tag Prototyping Sample

We manufactured our RFID-tag implementation on a multi-
project wafer (MPW) using the 0.35 um CMOS process tech-
nology C35b4 from AMS AG [25]. For ease of testability, a
small serial debug interface has also been added that allows
detailed analysis of the analog front-end and the EEPROM
(e.g., reading/writing arbitrary values from/to EEPROM). A
photo of the manufactured chip is shown in Figure 7.

After production, the chip has been integrated into a ceramic
package and soldered on a small printed circuit board (PCB)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. Proof-of-origin application using our RFID-tag prototyping sample
and the Google Nexus S mobile phone.

to allow tests with real-world RFID-reader devices. The PCB
contains an antenna with 4 windings that is connected to the
analog front-end of the chip. An adjustable capacitor is used
for matching of antenna and analog front-end. Figure 8 shows
a photo of the PCB with the packaged chip. We successfully
tested the RFID-tag sample with different commercially avail-
able RFID readers including mobile devices featuring NFC ca-
pabilities. Using the Google Nexus S, for example, the tag can
be powered fully passively and can reliably communicate with
the phone up to 3 centimeters (at data rates up to 424 kbit/s
and frequencies up to 6.68 MHz for the crypto unit). Using our
flexible tag platform, different RFID and NFC applications
have been realized such as proof-of-origin authentication to
thwart against counterfeiting goods or to generate location-
aware signatures to prove that a person or object has been at a
certain location in a specific moment in time. Several press
releases have been published that demonstrate these demo
applications, see for example [26] or [27].

D. Comparison with Related Work

Comparing our results with related work is rather diffi-
cult as only a handful of publications exist that deal with
implementing security-enabled tags. Moreover, authors often
give only a vague description of their designs regarding
implementation details and provided functionality. A.S.Man
et al. [28] and A.Ricci et al. [29], e.g., present tag designs for
the ultra-high frequency (UHF) range that contain an AES-128
implementation. The AES implementations used by them have
an area requirement of about 6-7 kGEs. Moreover, the two tag
designs cover only the baseband part, i.e., the digital circuit
without EEPROM and analog front-end. A design that is better
comparable to our work is the one of J.-W.Lee et al.[30].
The authors present an NFC tag including EEPROM (4 kbits,
i.e., same size as ours), analog front-end, and cryptographic
unit with AES-128. Their NFC tag has a similar size (i.e.,
around 50kGEs) than our design, but supports neither asym-
metric cryptography (or SHA-1) nor has it countermeasures
against implementation attacks integrated. This illustrates the
advantage of our design concept that provides not only high
flexibility but also very low resource usage when considering
all the implemented features.

1973

VI. CONCLUSION

In this article, we presented a flexible NFC-tag architecture
that provides enhanced security features using symmetric as
well as asymmetric cryptography. As a main contribution, the
work describes an entire “real-world” RFID system including
all hardware components needed for a practical chip fabrica-
tion. During the work, several outcomes have been obtained.
First, our design shows that significant resources can be saved
by applying a microcontroller-based architecture instead of
using a finite-state machine based controlling. The reason lies
in the fact that the controller can be simply reused by many
hardware components such as the crypto unit or the RFID
framing logic that would require more area when implemented
as individual hardware modules. For example, AES encryption
and decryption has been realized with an area overhead of
only 2387 GEs, which is lower than existing low-area AES
implementations. Furthermore, SHA-1 needs only 889 GEs
because of reusing available memory and microcontroller
components of the entire system. Next to these outcomes,
we made the experience that it is favorable to reuse the
microcontroller for RFID protocol handling, e.g., handling
ISO/IEC 14443 layer 4. This can be completely realized as a
micro program, which reduces further chip-area requirements
while increasing flexibility and assembly-based implemen-
tation convenience. Finally, we have practically proven our
design by fabricating the system as a prototyping sample that
demonstrates the feasibility of a full-blown RFID/NFC tag
supporting ISO/IEC 14443A layer 1-4, NFC Forum Type-4
features (including NDEF support), a flexible (programmable)
8-bit microcontroller, memory (RAM, ROM, and EEPROM),
analog front-end, and strong cryptography (ECDSA and AES)
for less than 50kGEs.

As future work, we plan to further analyze our design re-
garding enhanced implementation attacks such as side-channel
analysis and fault attacks. Moreover, we plan to implement
additional demo applications to verify the applicability of our
tag in different security-related scenarios.

ACKNOWLEDGMENT

The authors would like to thank Johannes Wolkerstorfer,
Manfred Aigner, Jorn-Marc Schmidt, and Nikolaus Ribic for
their contributions within this project and for very fruitful
discussions.

REFERENCES

[1] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authenti-
cation for RFID Systems using the AES Algorithm,” in CHES 2004,
Proceedings., vol. 3156. Springer, August 2004, pp. 357-370.

P. Himaldinen, T. Alho, M. Hénnikiinen, and T. D. Hamildinen, “Design
and Implementation of Low-Area and Low-Power AES Encryption
Hardware Core,” in DSD 2006, Proceedings. IEEE CS, September
2006, pp. 577-583.

L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Ver-
bauwhede, “Public-Key Cryptography for RFID-Tags,” in RFIDSec
2006, Proceedings., 2006, pp. 1-16.

P. Tuyls and L. Batina, “RFID-Tags for Anti-counterfeiting.” in CT-RSA
2006, Proceedings., D. Pointcheval, Ed., vol. 3860. Springer, 2006, pp.
115-131.

NFC Forum, “NFC Forum Type 4 Tag Operation - Technical Specifica-
tion,” Available online at http://www.nfc-forum.org/specs, NFC Forum,
March 2007.

[2]

[3]

[4]

[5]

http://www.nfc-forum.org/specs

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

(191

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(271

(28]

[29]

(30]

International Organization for Standardization (ISO), “ISO/IEC 14443-
3: Identification Cards - Contactless Integrated Circuit(s) Cards - Prox-
imity Cards - Part3: Initialization and Anticollision,” Available online at
http://www.iso.org, 2001.

——, “ISO/IEC 14443-4: Identification Cards - Contactless Integrated
Circuit(s) Cards - Proximity Cards - Part4: Transmission Protocol,”
Available online at http://www.iso.org, 2008.

——, “ISO/IEC 7816-4: Information technology - Identification cards -
Integrated circuit(s) cards with contacts - Part 4: Interindustry commands
for interchange,” Available online at http://www.iso.org, 1995.
National Institute of Standards and Technology (NIST), “FIPS-197:
Advanced Encryption Standard,” November 2001, available online at
http://www.itl.nist.gov/fipspubs/.

——, “FIPS-186-3: Digital Signature Standard (DSS),” 2009, available
online at http://www.itl.nist.gov/fipspubs/.

T. Plos and M. Feldhofer, “Hardware Implementation of a Flexible Tag
Platform for Passive RFID Devices,” in DSD 2011, Proceedings. TEEE
CS, August 2011, pp. 293-300, iSBN 978-1-4577-1048-3.

Infineon Technologies AG., “Security and Chip Card ICs SLE
88CFX4000P,” Available online at http://www.ic-on-line.cn/iol/
datasheet/s1e88cfx4000p_1310434.pdf, 2003.

NXP Semiconductors., “LPC1000(L) - 32-bit MCU,” Available online
at http://www.nxp.com, 2011.

National Institute of Standards and Technology (NIST), “FIPS-180-3:
Secure Hash Standard,” October 2008, available online at http://www.
itl.nist.gov/fipspubs/.

J. GroBschidl, “A Bit-Serial Unified Multiplier Architecture for Finite
Fields GF(p) and GF(2™),” in CHES 2001, Proceedings, vol. 2162.
Springer, May 2001, pp. 202-219.

D. Hein, J. Wolkerstorfer, and N. Felber, “ECC is Ready for RFID -
A Proof in Silicon,” in SAC 2008, Proceedings. Springer, September
2008, pp. 401-413.

M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation
on a Grain of Sand,” IEEE Proceedings on Information Security, vol.
152, no. 1, pp. 13-20, October 2005.

M. Hutter, M. Feldhofer, and J. Wolkerstorfer, “A Cryptographic Pro-
cessor for Low-Resource Devices: Canning ECDSA and AES like
Sardines,” in WISTP 2011, Proceedings., vol. 6633. Springer, 2011,
pp. 144-159.

M. Hutter, M. Feldhofer, and T. Plos, “An ECDSA Processor for RFID
Authentication,” in RFIDsec 2010, Proceedings., vol. 6370. Springer,
2010, pp. 189-202.

S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks — Re-
vealing the Secrets of Smart Cards. Springer, 2007, iSBN 978-0-387-
30857-9.

P. L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods
of Factorization,” Mathematics of Computation, vol. 48, no. 177, pp.
243-264, January 1987, iSSN 0025-5718.

P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
CRYPTO 1999, Santa Barbara, CA, USA, 1999, pp. 388-397.

T. Korak, T. Plos, and M. Hutter, “Attacking an AES-enabled NFC Tag -
Implications from Design to a Real-World Scenario,” in COSADE 2012,
Proceedings., 2012, pp. 17-32.

M. Feldhofer, M. J. Aigner, M. Hutter, T. Plos, E. Wenger, and
T. Baier, “Semi-Passive RFID Development Platform for Implementing
and Attacking Security Tags,” in RISC 2010, Proceedings., 2010, pp.
1-6.

AMS AG, “The AMS AG Website,” Available online at http://www.ams.
com/.

RFID im Blick, “Schliissel zur Authentizitéit,” Available online at http:
/Iwww.rfid-im-blick.de/images/stories/magazin/rib_flschungsschutz.pdf,
August 2011.

OREF, “Grazer Forscher entwickeln Echtheitspriifer,” Available online at
http://stmv1.orf.at/stories/514992, May 2011.

A. S. Man, E. S. Zhang, V. K. Lau, C. Tsui, and H. C. Luong, “Low
Power VLSI Design for a RFID Passive Tag baseband System Enhanced
with an AES Cryptography Engine,” in Eurasia 2007, Proceedings.
IEEE, September 2007, pp. 1-6.

A. Ricci, M. Grisanti, I. De Munari, and P. Ciampolini, “Design
of a 2uW RFID baseband processor featuring an AES cryptography
primitive,” in ICECS 2008, Proceedings, 31 2008-sept. 3 2008, pp. 376
-379.

J.-W. Lee, D. H. T. Vo, S.-H. Hong, and Q.-H. Huynh, “A Fully
Integrated High Security NFC Target IC Using 0.18 um CMOS Process,”
in ESSCIRC 2011, Proceedings. IEEE, 2011, pp. 551-554.

1974

Thomas Plos received the BSc and MSc degrees
in telematics from Graz University of Technology
(TU Graz) in 2004 and 2007, respectively. In 2011
he received the PhD degree in computer science
from TU Graz. His research interests include digital
VLSI design, information security, RFID technol-
ogy, and side-channel analysis. Currently, he is a
post-doctoral researcher at the Institute for Applied
Information Processing and Communications (IAIK)
at TU Graz.

Michael Hutter is a post-doctoral research assistant
at Graz University of Technology in Austria. Since
2007, he has been working in the security group of
the Institute for Applied Information Processing and
Communications (IAIK). His main research interests
include applied cryptography, RFID security and
privacy, side-channel attacks, and fault analyses. He
holds a PhD and MSc in Computer Science.

Martin Feldhofer received the MSc degree in
telematics in 2003 and the PhD degree in computer
science in 2008 both at Graz University of Technol-
ogy. Currently he is working at NXP Semiconduc-
tors with the focus in passive UHF technology. His
main research activity is in the area of secure RFID
technology with the focus of hardware design.

Maksimiljan Stiglic graduated in 1983 at Univer-
sity of Ljubljana, Faculty of Electrical Engineering
(title dipl.ing.). From 1983 to 1989 he worked as
researcher at the Laboratory for Microelectronics at
the University of Ljubljana, Faculty of Electrical
Engineering. In parallel he studied and passed his
master thesis (title Mag.) in Electrical Engineering
in 1987. From 1989 to 2008 he worked for EM
Microelectronic-Marin, Marin, Switzerland, as IC
designer and project manager, specialized in RFID
tag ICs. He joined AMS AG in August 2008.

Francesco Cavaliere graduated in 1989 at Univer-
sity of Rome “La Sapienza”, Faculty of Electronic
Engineering. From 1990 to 2009 he worked at Texas
Instruments in Dallas, Texas, USA, as IC designer
and project manager in different business units, with
focus on digital and mixed-signal design for RF ICs.
He joined AMS AG in March 2009.

http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.ic-on-line.cn/iol/datasheet/sle88cfx4000p_1310434.pdf
http://www.ic-on-line.cn/iol/datasheet/sle88cfx4000p_1310434.pdf
http://www.nxp.com
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.ams.com/
http://www.ams.com/
http://www.rfid-im-blick.de/images/stories/magazin/rib_flschungsschutz.pdf
http://www.rfid-im-blick.de/images/stories/magazin/rib_flschungsschutz.pdf
http://stmv1.orf.at/stories/514992

	Introduction
	The CRYPTA Tag
	Standard Compliance
	Splitting Functionality into Hardware and Software
	Life Cycle of the CRYPTA Tag
	Tag Production
	Personalization
	User Application

	Tag Architecture
	Analog Front-End
	Framing Logic
	8-Bit Microcontroller
	Crypto Unit
	Datapath for ECDSA, AES, and SHA-1
	Memory Unit
	Implementation-Attack Countermeasures

	Design Flow for Program Development
	Implementation Results
	Program ROM
	Power Consumption
	An RFID-Tag Prototyping Sample
	Comparison with Related Work

	Conclusion
	References
	Biographies
	Thomas Plos
	Michael Hutter
	Martin Feldhofer
	Maksimiljan Stiglic
	Francesco Cavaliere

